
PHYSICAL REVIEW E 67, 026322 ~2003!
Convective heat transport in a rotating fluid layer of infinite Prandtl number: Optimum fields
and upper bounds on Nusselt number

Nikolay K. Vitanov*
Institute of Mechanics, Bulgarian Academy of Sciences Akad. G. Bonchev Street, Block 4, 1113 Sofia, Bulgaria
and Max-Planck-Institute for Physics of Complex Systems, Noethnitzerstrasse 38, D-01187 Dresden, Germany
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By means of the Howard-Busse method of the optimum theory of turbulence we investigate numerically
upper bounds on convective heat transport for the case of infinite fluid layer with stress-free vertical boundaries
rotating about a vertical axis. We discuss the case of infinite Prandtl number, 12a solution of the obtained
variational problem and optimum fields possessing internal, intermediate, and boundary layers. We investigate
regions of Rayleigh and Taylor numbersR and Ta, where no analytical bounds can be derived, and compare the
analytical and numerical bounds for these regions ofR and Ta where such comparison is possible. The
increasing rotation has a different influence on the rescaled optimum fields of velocityw1, temperatureu1 and
the vertical component of the vorticityf 1. The increasing Ta for fixedR leads to vanishing of the boundary
layers ofw1 andu1. Opposite to this, the increasing Ta leads first to a formation of boundary layers of the field
f 1 but further increasing the rotation causes vanishing of these boundary layers. We obtain optimum profiles of
the horizontal averaged total temperature field which could be used as hints for construction of the background
fields when applying Doering-Constantin method to the problems of rotating convection. The wave numbera1

corresponding to the optimum fields follows the asymptotic relationshipa15(R/5)1/4 for intermediate Ray-
leigh numbers. However, whenR becomes large with respect to Ta, after a transition region, the power law for
a1 becomes close to the power law for the case without rotation. The Nusselt number Nu is close to the
nonrotational bound 0.32R1/3 for the case of largeR and small Ta. Nu decreases with increasing Taylor number.
Thus, the upper bounds reflect the tendency of inhibiting thermal convection by increasing rotation for a fixed
Rayleigh number. For the regions of Rayleigh and Taylor numbers where the numerical and asymptotic bounds
on Nu can be compared, the numerical bounds are about 70% lower than the asymptotic bounds.

DOI: 10.1103/PhysRevE.67.026322 PACS number~s!: 47.27.Te, 47.27.Cn
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I. INTRODUCTION

The turbulent solutions of the Navier-Stokes equations
very large Reynolds or Rayleigh numbers are extrem
complicated. The optimum theory of turbulence is amon
small number of tools for obtaining rigorous estimates of
turbulent quantities directly from these equations. It leads
upper bounds on turbulent quantities on the basis of or i
gral constraints which are members of infinite system of m
ment equations. Using finite number of these integral c
straints, we determine the class of fields among which
upper-bound solution of the corresponding variational pr
lem is sought. All solutions of the Navier-Stokes equatio
are contained in this class of fields and in addition the ene
balance of the real flow is retained. We can restrict the nu
ber of considered fields by taking into account additio
constraints. Thus, in principle, we can tighter the upp
bounds on the investigated quantities.

Two methods of the optimum theory of turbulence a
known. The Howard-Busse method is based on the idea
Malkus @1,2#, variational approach of Howard@3#, and the
multi-a-solutions of Busse@4#. This method was success
fully used by Chan@5# and applied to many cases of flu
flows and thermal convection@7–22#. We mention the recen
success in lowering the bounds on convective heat trans
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for convection in a rotating layer of finite Prandtl numb
through the use of separate energy balances for toroidal
poloidal components of velocity field@21#.

Another interesting method of the optimum theory of tu
bulence was proposed by Doering and Constantin@23#. This
method and its modification@24# are based on the idea for
decomposition of the velocity field into a steady backgrou
field that satisfies the inhomogeneous boundary conditio
and a homogeneous fluctuations field. An appropriate ba
ground field that satisfies certain spectral constraints ea
leads to an upper bound on the corresponding turbu
quantity@25–46#. In addition to the application for differen
flows and thermal convection the optimum theory of turb
lence was applied in plasma physics for obtaining up
bounds on the heat transport due to the ion-temperature
dient, on the energy dissipation in a turbulent pinch, e
@47–53#.

Many phenomena in earth atmosphere, oceans, solar,
planetary atmospheres are based on the turbulent the
convection in presence of rotation. Thus, it is a subject
extensive theoretical and experimental investigations@54–
68#. In this paper we use the Howard-Busse method of
optimum theory of turbulence and obtain numerical upp
bounds on convective heat transport in a horizontal laye
fluid rotating about a vertical axis for the case of moder
rotation rates and stress-free boundaries. The analytical t
ment of this problem has been presented in Refs.@8,69#. A
discussion of the problem of rotating convection from t
©2003 The American Physical Society22-1
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point of view of the Doering-Constantin method is presen
in Refs.@37,44,45#.

Numerical investigations are extremely useful in the op
mum theory of turbulence because of the following reaso

~a! In contrast to the analytical theory, by means of n
merical investigation we obtain profiles of optimum fiel
and bounds on the turbulent quantities without any assu
tions concerning the Euler-Lagrange equations of the va
tional problem. The only limitation on the size of the regio
of the obtained bounds in theR-Ta plane is the compute
power.

~b! If we are able to reach the regions of large Rayle
and Taylor numbers, we can test the assumptions of the
lytical asymptotic theory, to correct them and to amend
theory if necessary.

~c! The obtained numerical bounds are important also
small and intermediate values of the Rayleigh and Tay
numbers where the assumptions of the asymptotic theory
not valid. Our experience@15,16,20# shows that the numeri
cal bounds are lower than the analytical asymptotic bou
for large Rayleigh numbers.

~d! For very large values of Rayleigh and Taylor numbe
the numerical bounds approach the asymptotic bounds f
below. If we are able to obtain numerical solutions for su
large values of the Rayleigh and Taylor numbers, we can
to extract directly the asymptotic laws for the Nusselt nu
ber or for the wave numbers of the optimum fields.

~e! For many problems, we wish to develop an asympto
theory based on the multi-a solutions of the variational prob
lem. In order to do this successfully, we have to underst
the asymptotic behavior of the optimum fields as well as
asymptotic behavior of the bound on the convective h
transport for the case of 1-a solution of the corresponding
variational problem. This makes the numerical investigat
of the corresponding 12a solution of the variational prob
lem very important.

In this paper, we obtain numerically profiles of optimu
fields and upper bounds on the Nusselt number for the c
when the optimum fields consist of internal, intermedia
and boundary layers. We restrict the investigation to the c
of one wave number of the optimum fields with an object
to test the assumptions of the recently presented asymp
theory @69#, and to pave the way for constructing analytic
multi-wave-number theory, which eventually will lead
correction of Chan’s bounds@8#. It has been shown@19,69#
that the bounds of Chan are upper bounds on the up
bounds on the Nusselt number for several cases of con
tion with and without rotation. We could expect a simil
result also for the multi-wave-number bounds for the rotat
convection. The rotation leads to enormous complication
the analytical treatment of the multi-wave-number boun
To avoid mistakes, the theoretical assumptions must be
carefully checked for the case of the single-wave-num
theory. This can be done numerically and it is performed
the following sections of the paper. In Sec. II, we formula
the variational problem and discuss the region of validity
the 12a solution of the variational problem as a maximizin
solution. In Sec. III, we discuss the investigated regions
Rayleigh and Taylor numbers and the behavior of the o
02632
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mum fields. We show that these fields tend to satisfy
assumptions of the analytical asymptotic theory with incre
ing Rayleigh and Taylor numbers. We investigate the co
plicated behavior of the optimum field connected to the v
tical component of vorticity. In addition, we obtain optimu
profiles of horizontally averaged temperature field. Sec. IV
devoted to the behavior of the optimum heat transport
corresponding wave number. Several concluding remarks
presented in Sec. V.

II. MATHEMATICAL FORMULATION OF THE PROBLEM

We investigate a horizontal layer of fluid heated from b
low, which rotates about the vertical axis with a consta
angular velocityV. Let us discuss the idealized situation
an infinite layer and consider the Boussinesq approxima
to the equations of the fluid flow@70#. We shall use the
following notations.d, thickness of the fluid layer;k, ther-
mometric conductivity of the fluid;n, kinematic viscosity of
the fluid; g, acceleration of the gravity;DT, the temperature
difference between the upper and lower fluid boundary;r,
density of the fluid; P5n/k, Prandtl number; Ta
5(2Vd2/n)2, Taylor number;R5(ggDTd3)/(kn), Ray-
leigh number;g, coefficient of thermal expansion;p, pres-
sure; andk, unit vector in the direction opposite to the gra
ity.

Denoting the horizontal size of the fluid layer asL, we
define averages of quantities over the planesz5const and
over the fluid layer

q̄5 lim
L→`

1

4L2E2 l

l E
2L

L

dxdy$q~x,y,z,t !%, ~1!

^q&5 lim
L→`

1

4L2E2L

L E
2L

L E
21/2

1/2

dxdydz$q~x,y,z,t !%. ~2!

Taking d as a unit for length,k/d as unit for velocity,d2/k
as unit for time, andrnk/d2 as unit for pressure, we obtai
the dimensionless form of the Boussinesq equations,

1

P S ]u

]t
1u•“uD52

ATa

2
¹p1“

2u1RTk1ATa~u3k!,

~3!

]Q

]t
1u•“Q5¹2Q, ~4!

“•u50. ~5!

The boundary conditions atz561/2 are stress-free:u3
5]2u3 /]z25T50. The quantityQ in Eq. ~4! is the total
temperature field andT is the deviation of the temperatur
field from its horizontal mean.

Q5Q̄1T. ~6!

We formulate a variational problem using two mome
equations obtained on the basis of the Boussinesq equat
2-2
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CONVECTIVE HEAT TRANSPORT IN A ROTATING . . . PHYSICAL REVIEW E67, 026322 ~2003!
We assume that~i! all necessary horizontal averages of t
functions, describing the flow exist,~ii ! the horizontal aver-
ages of the fluctuation quantities vanish,~iii ! the flow is sta-
tistically steady in time and homogeneous in the horizon
averages.

Our objective is to obtain an upper bound on the conv
tive heat transport through the fluid layer, i.e., upper bou
on the Nusselt number

Nu511
^u3T&

R
. ~7!

We introduce Eq.~6! in the Boussinesq equations, mult
ply Eq. ~3! by the velocityu, and average over the flui
layer. The result is a relationship known also as a pow
integral

^u“•uu2&5R^u3T&. ~8!

Another relationship can be obtained by a multiplicati
of Eq. ~4! by T and by averaging the result over the flu
layer. In this way, we obtain a relationship containing t
term ^u3T(]Q̄/]z)&. It can be transformed by a horizont
averaging of the heat equation and integrating the obta
result with respect toz. Thus, we obtain

dQ̄

dz
5u3T2^u3T&21, ~9!

and the second power integral

^u“Tu2&5^u3T&22^u3T2&1^u3T&. ~10!

By means of Eq.~9!, we shall calculate the mean temper
ture Q̄ in the following section. The assumption of infinit
Prandtl number allows us to include additional restrictio
on the the manifold of candidates for optimum fields. O
investigations@21# show that the upper bound on convecti
heat transport in the case of a horizontal fluid layer hea
from below and rotating about a vertical axis depen
weakly on the Prandtl number when the Prandtl numbe
close to 7 and larger. This defines the region of Prandtl nu
bers, for which the approximation of infinite Prandtl numb
used here, is valid.

When Prandtl number is infinite, the Navier-Stokes eq
tion becomes linear and we include it as a constraint in
variational problem. We take into account the equation
continuity by the general representation of a solenoidal fi
u in terms of a poloidal and a toroidal component

u5“3~“3kf!1“3kc. ~11!

We introduce Eq.~11! into the Navier-Stokes equatio
(P5`) and perform the rescalings

u5m1/2^wu&21/2v, T5m1/2^wu&21/2R21u, ~12!
02632
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wherez component of the rescaled velocity fieldv is denoted
asw. Taking thez component of the horizontal curl and thez
component of the double curl of the result, we obtain t
relationships

¹2f 1ATa
]w

]z
50, ~13!

¹4w1¹1
2u2ATa

] f

]z
50, ~14!

where f 52¹1c is the vertical component of the vorticity
Substitution of Eq.~12! in Eq. ~10! leads to

R5
^u“uu2&

^wu&
1m

^~wu2^wu&!2&

^wu&2
. ~15!

Using Eqs.~13!, ~14!, and~15!, we formulate the following
variational problem (p* and q* are Lagrange multipliers!:
Find the minimum R(m) of the variational functional

R5
^u“uu2&

^wu&
1m

^~wu2^wu&!2&

^wu&2
2 K p* S ¹2f 1ATa

]w

]z D L
2 K q* S ¹4w1¹1

2u2ATa
] f

]zD L , ~16!

among all fields w, u, f that satisfy the boundary condition

w5u5
]2w

]z2
5

] f

]z
50, ~17!

at z561/2.
The corresponding Euler-Lagrange equations are E

~13!, ~14!, and

^u“uu2&u12u@m~wu2^wu&!2R^wu&#

2^wu&2S ¹4q* 2ATa
]p*

]z D50, ~18!

^uuu2&w22^wu&¹2u12w@m~wu2^wu&!2R^wu&#

2^wu&2¹1
2q* 50, ~19!

¹2p* 1ATa
]q*

]z
50. ~20!

We note that the fieldsw andu, determined from the Euler
Lagrange equations, automatically satisfy the power integ
~8!. After elimination of the Lagrange multipliers and intro
duction the 12a solutions of the variational problem,

w5w1~z!f~x,y!, ~21!

u5u1~z!f~x,y!, ~22!

f 5 f 1~z!f~x,y!, ~23!
2-3
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where ff51 and ¹1
2f52a1

2f,we obtain the following
form of the Euler-Lagrange equations:

2^w1u1&S d2

dz2
2a1

2D 4

u11F2S d2

dz2
2a1

2D 3

w1

2Ta1/2S d2

dz2
2a1

2D d f1

dz GF2R^w1u1&1K u1S d2

dz2
2a1

2D u1L G
22ma1

2H S d2

dz2
2a1

2D @u1~w1u12^w1u1&!#J 22mH S d2

dz2

2a1
2D 3

@w1~w1u12^w1u1&!#J 1Ta
d2w1

dz2 K u1S d2

dz2

2a1
2D u1L 12Tâ w1u1&

3S d2

dz2
2a1

2D d2u1

dz2
22Ta

d2

dz2
$w1@m~w1u12^w1u1&!

2R^w1u1&#%50, ~24!

S d2

dz2
2a1

2D f 11Ta1/2
dw1

dz
50, ~25!

S d2

dz2
2a1

2D 2

w12a1
2u15Ta1/2

d f1

dz
. ~26!

The homogeneity of the Euler-Lagrange equations allows
to impose the requirementm5^w1u1&. For w1 , u1, and f 1,
we use the following relationships that satisfy the bound
conditions:

w1~z!5 (
m51

M

amsin@~2m21!p~z11/2!#, ~27!

u1~z!5 (
m51

M

bmsin@~2m21!p~z11/2!#, ~28!

f 1~z!5 (
m51

M

cmcos@~2m21!p~z11/2!#. ~29!

We have to truncateM in such a way that the solutions d
not depend in any significant way on this parameter. O
criterion has been that the truncation value ofM is suffi-
ciently large such that Nu changes by less than 0.1% w
M is replaced byM25. The largest value forM used in the
calculations wasM5160. The relationships forw1 and u1
are symmetric with respect toz50 and the relationship fo
f 1 is antisymmetric. The reason for this choice are the
merical investigations for the case of finite Prandtl num
@21#. They show that with increasing Prandtl number, t
fieldsw1 andu1 become symmetric with respect toz50 and
the profile for f 1 becomes antisymmetric.
02632
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As it can be seen from Eqs.~21!–~23!, we restrict our
investigation to the 12a solution of the variational problem
In addition to the objective for testing the assumption of t
analytical theory from@69# we have one more reason. A
shown by Chan, Ref.@8#, when Ta,O(R4/3), the maximiz-
ing solution has finitely many modes. This is an importa
difference with respect to the case of a fluid of finite Pran
number and without rotation for which the number of wa
numbers of the maximizing solution can be infinite. Mor
over, in the region of largeR and Ta and when

R(4•2k23)/(3•2k22)<Ta<R(8•2k23)/(6•2k22), ~30!

the maximizing solution hask11 modes. The region of va
lidity of the single-wave-number solution from Ref.@69# is a
subregion of the region~30! whenk50. Thus, according to
Eq. ~30!, the 12a solution has to be maximizing when T
,O(R)5/4 , i.e., for almost the entire regions of largeR and
Ta investigated in this paper.

III. BEHAVIOR OF THE OPTIMUM FIELDS

From the point of view of the analytical theory@69# if
Ta!a1

4, we do not expect significant changes in t
asymptotic behavior of the optimum fields in comparison
the case without rotation. After a transition region arou
Ta}a1

4, we can check the assumptions and results of
asymptotic theory for the case of intermediate rotation ra
i.e., fora1

4!Ta!a1
6. After a second transition region aroun

Ta}a1
6, we can study the influence of strong rotation a

check the analytical results when Ta is larger thana1
6 or

whena1@Nu. In order to compare the numerical investig
tions to the assumptions and results of the analyt
asymptotic theory, we have to consider the investigated
gions in the planes Ta2a1 and Ta2R. These regions are
shown in Fig. 1. The figure is obtained as follows. For pa
~a!, we fix the Taylor number and calculate the functio
Nu(a1) for several values of the Rayleigh number. We d
note with filled circles the values of the wave numbera1
corresponding to the maximum of the Nusselt number
given values ofR and Ta. As the Taylor number is fixed, w
obtain straight lines of filled circles with increasing Rayleig
number. The optimum value of the wave number increa
with increasing Rayleigh number and the last circle on
right-hand side of each straight line corresponds to the m
mum value of Rayleigh number for, which we have be
able to perform the calculation for the corresponding fix
value of the Taylor number. Panel~b! of Fig. 1 is produced in
the same manner as panel~a! with the difference that we fix
the Taylor number and plot with filled circles the Rayleig
numbers corresponding to optimum values ofa1 plotted in
panel~a!. Thus, for an example, the last circle of the botto
straight line in panel~a! corresponds to the last circle at th
bottom straight line in panel~b!.

Panel ~a! of Fig. 1 shows that on the basis of the pe
formed numerical calculations we can make conclusio
about regions where Ta!a1

4; Ta}a1
4 and a1

4!Ta!a1
6, i.e.,

for the regions of weak rotation, first transition region, a
the region of intermediate Taylor numbers. We see that in
2-4
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CONVECTIVE HEAT TRANSPORT IN A ROTATING . . . PHYSICAL REVIEW E67, 026322 ~2003!
case of small Taylor numbers and increasing Rayleigh n
ber, the wave number leaves the region of validity of t
analytical asymptotic results and gets into the region of
lidity of the asymptotic results for the case without rotatio
Only when the Taylor number becomes large enough,
numerical results can be compared to the analyt
asymptotic results. In order to make statements about
analytical asymptotic relationships for the upper bound
the convective heat transport and optimal wave number

FIG. 1. Panel~a! investigated area for the optimum wave num
ber. Solid line, Ta5a1

4; dashed line, Ta5a1
6. Panel~b! R-Ta dia-

gram. Solid line denoted by 1, Ta5R; dashed line denoted by 2
Ta5R11/10; dashed-double dotted line denoted by 3, Ta5R5/4; dot-
ted line denoted by 4, Ta5R13/9.
02632
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have to take into account the region of validity of the
bounds in theR-Ta plane. It is presented in panel~b! of Fig.
1. For the case of three-layer optimum fields, the asympt
bound for the case of intermediate Taylor numbers is va
for large enough values of the Rayleigh and Taylor numb
and whenO(R)!Ta!O(R11/10). As it can be seen from
panel~b! of Fig. 1, the region of validity of asymptotic rela
tionships is relatively small for the numerically reached v
ues ofR and Ta. Thus, we have to be careful in the sta
ments about asymptotic relationships on the basis of
obtained numerical results. In the same panel, we pre
also the regionR5/4,Ta,R13/9, where according to the
theory of Chan, the two-wave-number solution has to b
maximizing one. We note that only few of our calculatio
are in this region of theR-Ta plane. These calculations, how
ever, are relatively close to the onset of convection and t
are quite far from the region where the asymptotic proper
of this solution can be investigated. We estimate that in or
to do this investigation, one has to perform numerical cal
lations for values of Rayleigh and Taylor numbers, at le
1018–1020. This task requires much computing time even f
the largest computers. Moreover, the results for the tw
wave-number solution are not so important for the analyti
multi-wave-number theory because all assumptions, mad
order to construct such a theory, can be tested for m
lower Rayleigh and Taylor numbers in the case of the sing
wave-number theory.

One of the widely used assumptions of the asympto
theory is that the ratioP5w1u1/^w1u1& tends to 1 in the
entire vertical region of the fluid layer except for the tw
boundary layers. Figure 2 shows the influence of Rayle
and Taylor number onP. In panel~a!, the Taylor number has
the fixed value Ta5103 but the picture is characteristic als
for the case of much larger Taylor numbers. We observe
formation of boundary layers and in large areas of the fl
layer P→1 as it is assumed in the analytical asympto
theory. The effect of increasing rotation onP can be seen in
panel~b! of Fig. 2. Here the Rayleigh number is fixed. In th
region of small Taylor numbers, we observe relatively slo
deviation from a profile close to the asymptotic profile. Th
tendency becomes much visible when Taylor number
comes large enough and the profile becomes close to
profile around the onset of the convection. Thus, in orde
haveP→1 it is not sufficient that the values of Rayleigh an
Taylor numbers are large enough. In addition, the Rayle
number must be large enough for the given value of
Taylor number.

Let us fix the Taylor number and increase the Rayle
number. This leads to formation of boundary layers of t
optimum fields. Larger values of the Taylor number lead
more slow formation of boundary layers with increasi
Rayleigh number. Figure 3 shows the formation of bound
layers forw1(z) when Ta5106. We note that in the case o
finite Prandtl numbers and without rotation, we observe
formation of a peak of the function dependent onw1(z) and
motion of this peak to the border of the fluid layer wi
increasing Rayleigh number@15#. Here the Prandtl number i
infinite and there is no peak formation. Thus, the situation
analogous to the case without rotation@16# with one differ-
2-5
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ence: because of the presence of rotation, the formatio
boundary layers proceeds more slow. Panel~b! of Fig. 3
shows that the increasing Taylor number when the Rayle
number is fixed leads to vanishing of the boundary layers
w1 and to decreasing of the functionw1(z) in the entire
vertical direction of the fluid layer.

FIG. 2. Panel~a! influence of Rayleigh number on the ratioP
5w1u1/^w1u1& when Taylor number is fixed, Ta5103. From top to
the bottom atz50: R52.73103, 33103, 53103, 104, 2.53104,
53104, 105, 2.53105, 106, 107. Panel ~b! influence of Taylor
number when Rayleigh number is fixed,R5106. Solid line, Ta
5103; dotted line, Ta5104; dashed line, Ta5105; dot-dashed line,
Ta5106; dot-two dashes line, Ta5107,
02632
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Characteristic feature of the fieldu1 is the fast formation
of boundary layer with increasing Rayleigh number. T
boundary layer is very thin and the corresponding peaks
the functionu1(z) are very sharp—see panel~a! of Fig. 4.
We note that the boundary layer foru1 is thinner than the
boundary layer forP, which is thinner than the boundar
layer for w1. The presence of rotation leads to

FIG. 3. Panel~a! influence of Rayleigh number onw1 when the
Taylor number is fixed, Ta5106. Solid line, R5105; dot-long
dashed line,R5106; dashed line,R52.53106; dot-short dashed
line, R5107; two dots-dashed line,R52.53107; long-dashed line,
R5108. Panel~b! influence of Taylor number onw1(z) when Ray-
leigh number is fixed.R5108. Solid line, Ta5106; dotted line,
Ta5107; dashed line; Ta5108; dot-dashed line, Ta5109; long-
dashed line, Ta51010.
2-6
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delay of formation of the boundary layer. In large region
fluid layer, the deviations ofu1 from its value at the interior
of the layer are very small. The effect of vanishing of t
boundary layer ofu1 because of increasing rotation can
seen in panel~b! of Fig. 4. The peak in the boundary laye
persists up to very large values of Taylor numbers. The
creasing value ofu1 in the boundary layer is connected wi
increasing value of the optimum field in the interior of th

FIG. 4. Panel~a! influence of Rayleigh number onu1 when
Taylor number is fixed. Ta5108. From top to the bottom:R52.5
3108,108,53107, 2.53107,107,53106, 33106,23106. Panel~b!
influence of Taylor number on the optimum fieldu1 . R5107. The
values of the Taylor numbers are solid line, Ta5103; dotted line,
Ta5104; dashed line, Ta5105; dot-dashed line, Ta5106; long
dashed line, Ta5107; two dots-dashed line, Ta5108.
02632
f

e-

fluid layer. We note that the decrease inw1 andu1 whenR is
fixed and Ta increases leads to decrease in^w1u1& and thus
to decrease in the Nusselt number.

A new moment in comparison to the case without rotat
is the presence and behavior of the fieldf 1(z). Panel~a! of
Fig. 5 shows the influence of increasing Rayleigh number
f 1 when the Taylor number is fixed. We observe formation
a boundary layer and at the remaining part of the layer,f 1 is
very close to 0 as assumed by the analytical asympt
theory. The Taylor number has quite an interesting influe
on f 1(z). This can be seen in panel~b! of Fig. 5. When the
Taylor number is small in comparison to the Rayleigh nu
ber, the increase in rotation leads to formation of bound
layer and to enlarging the area in the interior of the flu
layer wheref 1 has a small value. However, further increa
ing in the Taylor number leads to the opposite process.
sharp boundary layer begins to smooth and the abso
value of f 1 in the interior of the fluid layer increases.

Figure 6 presents the influence of the Taylor and Rayle
numbers on the mean temperature profile as calculated
Eq. ~9!. The upper panel presents the case of fixed Rayle
number. The profile ofQ̄ has characteristic peaks that vani
when the Taylor number increases. The process of forma
of such peaks can be seen when the Taylor number is fi
and Rayleigh number increases. The profiles shown in Fi
could be used as hints for construction of background fie
when applying the method of Doering and Constantin to
problems of rotating convection. These profiles show that
optimum background field could have complicated structu
consisting of curved lines.

IV. UPPER BOUNDS ON THE HEAT TRANSPORT
AND BEHAVIOR OF THE OPTIMUM WAVE NUMBER

The influence of rotation on the optimum wave number
in agreement to the assumptions of the analytical asympt
theory. Panel~a! of Fig. 7 shows that for fixed and sma
Taylor numbers,a1(R) follows the the power law for the
case without rotation but the coefficient before the powe
larger than 0.2. For example, when Ta5103, the coefficient
is close to 0.9. With increasing Taylor number,a1(R) is
close to the asymptotic relationshipa15(R/5)1/4 for the case
with rotation but when the Rayleigh number becomes la
enough after a transition regiona1 begins to follow the
asymptotic relationship for the case without rotation@see, for
example, the triangles marking the case Ta5106 in panel~a!
of Fig. 7#. With increasing Taylor number the region,
which the asymptotic relationship for the case with rotati
is followed becomes larger at the expense of the transi
region and the region wherea1 is close to the asymptotic
power law for the case without rotation. We note that th
transition region is the transition region around Ta}a1

4 pre-
dicted from the analytical theory.

Panel~b! of Fig. 7 presents the influence of Rayleigh a
Taylor numbers on convective heat transport. We obse
that increasing Taylor number leads to decreasing Nus
number, i.e., to an inhibition of the heat transport. Thus,
optimum theory correctly reflects this property of the ro
2-7
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tion. For large Taylor numbers, the optimum fields conve
very fast to the corresponding asymptotic profiles. T
makes difficult their numerical investigation for large valu
of theR because of the very small sizes of the correspond
boundary layers. One of the assumptions of the analyt
theory is that for small Taylor numbers, the upper bound
Nu should be close to the bound 0.32R1/3 for the case with-

FIG. 5. Panel~a! influence of Rayleigh number on the fiel
f 1(z) when Taylor number is fixed, Ta5106. From top to the bot-
tom at z521/2: R5105,106,2.53106, 107,2.53107,108. Panel
~b! influence of Taylor number on the optimum fieldf (z). R
5107. The values of the Taylor number are solid line, Ta5103;
dotted line, Ta5104; long-dashed line, Ta5105; dot-dashed line,
Ta5106; dashed line, Ta5107; two dots-dashed line, Ta5108.
02632
e
s

g
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out rotation@16#. Indeed in panel~b! of Fig. 7, we see that
with increasing Rayleigh number and fixed Taylor numb
the upper bound on the convective heat transport approa
from below the above-mentioned bound.

We can compare the numerical bounds to the analyt
bounds, obtained in Refs.@69,37,45#. A comparison between
the analytical bounds from Refs.@69,37# has been made in

FIG. 6. Panel~a! influence of rotation on the mean temperatu
field, R52.53106. Solid line, Ta5103; dotted line, Ta5104;
dashed line, Ta5105; dot-dashed line, Ta5106; long-dashed line,
Ta5107. Panel~b! influence of the Rayleigh number when Taylo
number is fixed, Ta5106. Solid line, R5105; dotted line,R52.5
3105; dot-dashed line,R553105; dashed line,R5106; two dots-
dashed line,R52.53106; dot-two dashes line,R553106.
2-8
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Ref. @69#. Due to this, we shall compare the bounds obtain
above to the bounds from Refs.@69,45#. In Ref. @69#, the
bounds are as follows. For large values ofR and Ta and when
Ta!R, the situation is similar to the case without rotatio
and the upper bound is the same as in the nonrotational c

FIG. 7. Panel~a! influence of Taylor number on the optimum
wave number. Dashed line: asymptotic optimum wave number
the case without rotation. Dot-dashed line: asymptotic optim
wave number for the case with rotation. Stars, Ta5103; squares,
Ta5104; plusses, Ta5105; triangles, Ta5106; circles, Ta5107;
diamonds, Ta5108. Panel~b! Nusselt number as function of Ray
leigh number for different Taylor numbers. Solid line: th
asymptotic power law Nu50.32R1/3 for the case without rotation
Circles, Ta5103; squares, Ta5104; diamonds, Ta5105; triangles,
Ta5106; plusses, Ta5107; 3, Ta5108; stars, Ta5109.
02632
d

se:

Nu50.32R1/3 as obtained in Ref.@16#. After a transition re-
gion around Ta5R for the regionO(R)!Ta!O(R11/10), the
bound is

Nu215
2

31/355/3D4/3

R2/3

Ta1/5F S 5Ta2

R D G1/3

L, ~31!

whereD51.06 andL is

L5S 11

lnH lnF S 5Ta2

R D 1/6G J
3 lnS 5Ta2

R D 1/6 D 21/3

. ~32!

There are three kinds of bounds in Ref.@45#. The bound
without rotation

Nu,R1/3~ ln R!2/3 ~33!

holds up to the Ta<4R1/3(ln R)5/3. The bound

Nu<~ 1
2 !4/5Ta2/5R1/5 ~34!

has a region of validity 4R1/3(ln R)5/3<Ta<4R1/2, and fi-
nally the bound

Nu<R2/5 ~35!

is valid in the region 4R1/2<Ta<4R4.
Figure 8 shows a comparison among the numer

bounds and the above-mentioned analytical bounds. Th
are three groups of plots shown in this figure. The symb
~circles, squares, diamonds, triangles, and plusses! show the
numerically obtained bounds. The dotted, dashed, and
dashed lines present the bound~35! for the same values o
Rayleigh numbers, for which the numerical bounds are
tained. The solid line marked withB presents the bound~31!
correspondent to the numerical bound, marked with plus
The last numerical bound is about 70% lower than the bo
~31!. Figure 8 is a nice illustration of the fact that because
the large number of assumptions in the process of of
analytical bounds in Ref.@69#, their region of validity is
much smaller in comparison to the region of validity of th
numerical bounds. As in the all cases we investigated
merically up to now@16,20#, the here obtained numerica
bounds lie below the analytical asymptotic bounds.

The difference among the numerical bounds and the a
lytical bound~35! is larger than 70% but an useful feature
the bound~35! is that this bound has much larger region
validity than the bound~31!. Thus it is the best analytica
bound for the regions ofR and Ta where the analytical boun
~31! is not valid.

V. CONCLUDING REMARKS

The processes in rotating convecting systems are g
erned by the interplay between heating and rotation, i.e.,
tween the Rayleigh and Taylor numbers. One assumptio
the asymptotic theory is that for very large values of t

r

2-9
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NIKOLAY K. VITANOV PHYSICAL REVIEW E 67, 026322 ~2003!
Rayleigh and Taylor numbers, some terms in the Eu
Lagrange equations are much smaller than the other te
On the basis of this assumption, we neglect the influenc
such terms and the equations are simplified. This allows
to obtain analytical asymptotic results for the upper boun
wave numbers of the optimum fields, etc. For the case
nonasymptotic values of the Rayleigh and Taylor numbe
all terms in the Euler-Lagrange equations are significant,
equations become too complicated for an analytical tre
ment, and we have to solve them numerically. Because of
numerous assumptions for the behavior of the terms of
Euler-Lagrange equations of the variational problem, the
gion of applications of the analytical asymptotic results
confined inR-Ta plane, and it is relatively small for interme
diate values of Rayleigh and Taylor numbers accessible w
computers. For an example, a more careful calculation of
coefficients in Eq.~30! leads to the following relationship fo
the validity of the single-wave-number solution for the ca
of large Rayleigh and Taylor numbers

210

p4
R<Ta<

1

5
R5/4, ~36!

i.e., its region of validity starts whenR becomes larger than
763 300. In the same way, the region of validity of the bou
~34! begins whenR1/6>(ln R)5/3. In the case of numerica
investigation, we do not make any assumptions about
Euler-Lagrange equations. This allows us to investigate

FIG. 8. Comparison of the numerically calculated relations
Nu(Ta) for fixedR and corresponding analytical asymptotic re
tionships from Refs.@45,69#. Nonmarked lines: analytical result
from Ref. @45#. Double dash-dotted line,R553106; long dashed
line, R5107; dotted line,R52.53107; dashed line,R553107;
dot-dashed line,R5108. Solid line marked withB: analytical
bound from Ref.@69# for R5108. Symbols: numerical results ob
tained in this paper. Circles,R553106; squares,R5107; dia-
monds,R52.53107; triangles,R553107; plusses,R5108.
02632
r-
s.

of
e

s,
f

s,
e
t-
e
e
-

th
e

e

d

e
p-

per bounds on the convective heat transport also in reg
of Rayleigh and Taylor numbers where the assumptions
the asymptotic theory are not valid.

With respect to the assumptions of the analytical theo
we can make the following conclusions.

~i! The numerical investigations confirm the assumpt
that in the case of small Taylor numbers, i.e., when
!a1

4, the behavior of the optimum fields and the behavior
the upper bounds is similar to the behavior in the case w
out rotation. In particular, the power law fora1 is the same
as in the case without rotation with the difference that
coefficient before the power is larger. For fixed values
Taylor number, and with increasing Rayleigh number the
per bound on Nu is close to the corresponding bound for
case without rotation.

~2! We detected the predicted transition region Ta}a1
4 in

the functiona(R,Ta).
~3! When R and Ta are large enough thenP→1 in the

entire fluid layer except for the two boundary layers.
~4! w1 and u1 tend to be constants in the interior of th

fluid layer andf 1→0 in the interior for largeR and Ta.
~5! We observe different speeds of approaching

asymptotic relationships. There exist fast approaching of
asymptotic law fora1(R). Much slower is the approachin
the asymptotic relationship for the Nusselt number for
case of large Taylor number.

~6! The obtained numerical bounds are always lower th
the analytical bounds, projected back to the intermediate
ues ofR and Ta.

In addition, we observed interesting behavior of the v
tical component of the vorticity where rotation can lead
formation of boundary layers. The optimum profiles forQ̄
are quite complicated. We note that these optimum profi
are obtained automatically on the basis of the calculated
timum fields and carry much interest for theoreticians a
experimentalists information about the temperature distri
tion.

Finally, we note that our investigation was based on thr
layer optimum fields, i.e., the optimum fields have the sa
structure as in the case without rotation. The numerical
vestigation in this paper confirms all assumptions of the c
responding analytical asymptotic theory. Thus, the way
amending the multi-wave-number theory of the upp
bounds for the rotating confection is paved. In addition
this problem, the optimum theory of turbulence of rotati
convection leads to many other interesting problems. For
example, in the case of infinite Prandtl numbers and ri
boundaries, the optimum fields have to be a four-layer o
Four-layers optimum fields could exist also for the case
stress-free boundaries. The investigations of these cases
be subject of future research.
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